中国金融网 加入收藏    设为首页
首页
国内资讯社会财经科技教育时尚娱乐房产家居汽车母婴健康商业区块链生活企业传媒区域经济旅游体育
您现在的位置:首页 > 财经 > 正文
斯坦福2023AI指数报告出炉,中国霸榜AI顶会,中科院论文发表量世界第
2023-04-06 11:56      来源:IT之家      编辑:安靖      阅读量:7209   

2023 年人工智能指数报告发布了!这份报告显示,中国在 AI 顶会论文上表现世界居首,然而引用量却低于美国。另外,AI 论文发表量世界前十的机构中,中国占了 9 席,纷纷赶超 MIT。

今天,斯坦福发布了 2023 年 AI 指数报告。

值得注意的是,斯坦福 AI 指数报告列出了「AI 论文发表量」世界前十的机构,9 所全部来自中国,纷纷赶超 MIT。

它们分别是:中国科学院、清华大学、中国科学院大学、上海交通大学、浙江大学、哈尔滨工业大学、北京航空航天大学、电子科技大学、北京大学、以及 MIT。

今年的报告主要分为八大节:研究与发展,技术表现,人工智能技术伦理,经济,教育,政策和治理,多样性,以及公众观点。

以下内容提取了报告几项要点。

中美论文合作全球居首

从 2010 年-2021 年,尽管 AI 论文跨国合作的步伐已经放缓,但是自 2010 年以来,美国和中国的人工智能研究合作数量增加了大约 4 倍,比中国和英国合作总数多 2.5 倍。

然而,从 2020 年-2021 年,中美合作的总数仅增长了 2.1%,是自 2010 年以来的最小同比增长率。

此外,人工智能论文的总数自 2010 年以来翻了一番以上。从 2010 年的 20 万篇增长到 2021 年的近 50 万篇。

就 AI 论文发表的类型来看,2021 年,所有已发表的 AI 论文中有 60% 是期刊文章,17% 是会议论文,13% 来自存储库。

虽然在过去 12 年中期刊和储存库论文分别增长了 3 倍和 26.6 倍,但会议论文的数量自 2019 年以来有所下降。

模式识别、机器学习和计算机视觉依旧是人工智能领域研究的热门话题。

中国在期刊、会议和储存库论文总量方面依旧处于领先地位。

美国在人工智能会议和储存库引用方面仍然领先,但这些领先优势正被慢慢削弱。尽管如此,世界上大多数的大型语言模型和多模态模型是由美国机构产生的。

中国霸榜 AI 顶会,但引用量低于美国

AI 期刊论文的发表,中国始终保持领先地位,2021 年为 39.8%,其次是欧盟和英国,然后是美国(10.0%)。

自 2010 年以来,中国人工智能期刊论文被引频次占比逐步上升,欧盟、英国、美国均有所下降。中国、欧盟和英国、美国占全球总引用量的 65.7%。

那么,世界顶会论文发表的情况又如何?

2021 年,中国以 26.15% 的比例在全球 AI 顶会发表的论文数所占份额最大,而欧盟和英国以 20.29% 紧随其后,美国以 17.23% 位居第三。

从顶会论文引用量来看,中国虽然高产,但引用量相较于美国来说较低。美国顶会论文引用量 23.9%,中国为 22.02%。

从侧面可以看出,中国论文发表数量最多,但质量不如美国高。

在 AI 论文储存库提交方面,美国在世界居首,23.48%。中国最低,11.87%。

中国 9 所机构,AI 论文发表赶超 MIT

2021 年,发表论文总量世界前十机构中,中国占了 9 所,不同机构发表的论文总数如下图,MIT 位列第十,发表论文 1745。

就计算机视觉领域来看,中国的十所机构位居世界前十,它们分别是,中国科学院、上海交通大学、中国科学院大学、清华大学、浙江大学、北京航空航天大学、武汉大学、北京理工大学、哈尔滨工业大学,以及天津大学。

在自然语言处理领域,就有所不同了。

世界前十的机构 / 公司有:中国科学院、卡内基梅隆大学、微软、清华大学、卡内基梅隆大学-澳大利亚分校、谷歌、北京大学、中国科学院大学、阿里、亚马逊。

语音识别领域排名如下:

工业界领先学术界

在 2022 年发布的重要人工智能机器学习系统中,语言系统占最多,有 23 个,是多模态系统数量的 6 倍。

在论文产量上,工业界领先于学术界。

直到 2014 年,大多数重要的模型都是由学术界发布的。从那时起,工业界便逆袭翻身。到 2022 年,32 个重要的机器学习模型都诞生在工业界,而学术界仅有 3 个。

由此可见,与非营利组织和学术界相比,构建最先进的人工智能系统越来越需要大量的数据、计算机能力和资金资源,而行业参与者固然有更多的资金资源去做这件事情。

2022 年,美国产生了数量最多的重要机器学习系统,有 16 个,其次是英国和中国(3 个)。

此外,自 2002 年以来,就创建的重要机器学习系统总数而言,美国已经超过了英国和欧盟、中国

再来看做出这些重要 AI 系统背后研究者国分布,美国有最多的研究者,285 人,是英国的 2 倍多,是中国的近 6 倍。

LLM 越来越大,算力越贵

大型语言和多模态模型,有时称为基础模型,是当前一种新兴且日益流行的 AI 模型类型,它在大量数据上进行训练并适用于各种下游应用程序。

ChatGPT、DALL-E 2 和 MakeA-Video 等大型语言和多模态模型已经展示了令人印象深刻的功能,并开始在现实世界中广泛部署。

通过对这些模型作者的国家隶属关系进行了分析,这些研究人员中的大多数来自美国机构。

斯坦福 AI 指数报告还列出了大型语言和多模态模型发布的时间表。

大型语言模型正变得越来越大,也越来越昂贵。

第一个大型语言模型 GPT-2 于 2019 年发布,有 15 亿参数,训练成本约 50000 美元。谷歌 PaLM 是 2022 年推出的大型语言模型之一,有 5400 亿参数,成本高达 800 万美元。

从参数和训练成本来看,PalM 比 GPT-2 大 360 倍,成本高出 160 倍。

不仅仅是 PalM,从整体上看,大型语言和多模态模型变得越来越大和昂贵。

例如,DeepMind 于 2022 年 5 月推出的大型语言模型 Chinchilla 估计耗资 210 万美元,而 BLOOM 的训练大约耗资 230 万美元。

随着时间的推移,GAN 在人脸生成方面的进展,最后一个图像由 Diffusion-GAN 生成,这一模型在 STL-10 上取得了最新的 SOTA。

去年,随着 OpenAI 的 DALL-E 2、Stability AI 的 Stable Diffusion、Midjourney、Meta 的 Make-AScene,以及谷歌的 Imagen 等模型的发布,文本到图像生成模型逐渐走进大众视野。

如下,输入相同的提示,「一只熊猫在温暖的巴黎夜晚弹钢琴」,分别由 DALL-E 2、Stable Diffusion 和 Midjourney 这三个可公开访问的 AI 文本到图像系统生成的图像。

在最近发布的所有文本到图像生成模型中,谷歌的 Imagen 在 COCO 基准测试中表现最好。

今年,创建 Imagen 的谷歌研究人员还发布了一个更难的文本到图像基准测试 DrawBench,旨在挑战功能越来越强大的文本到图像模型。

此外,报告还介绍了当前生成式 AI 模型存在一些偏见,比如给 DELLE-2 提示 CEO 时,每个人似乎都采取了交叉双臂自信的姿势。

在 Midjourney 中,当提示生成「有影响力的人」时,它会生成 4 张看起来年长的白人男性图像。

完整报告内容请参见:

郑重声明:此文内容为本网站转载企业宣传资讯,目的在于传播更多信息,与本站立场无关。仅供读者参考,并请自行核实相关内容。

 
上一篇: 银行业角力移动端去年底六大行手机银行客户数合计超20亿户
下一篇:最后一页
 
     栏目排行
  1. 银行业角力移动端去年底六大行手机银行客户
  2. 摩根智能家居设计:让未来触手可及
  3. 百人会论坛 — 开思江永兴:共同推动新能
  4. 幸福人寿诚信经营,40万理赔款快速到账
  5. 热烈祝贺;福州帝九生物科技有限公司成功登
  6. 马上金融:社会责任是一场需要用持之以恒、
  7. 和合资管:工业企业利润有望触底回升
  8. 独家—白药正在悄悄改变的事
  9. 恒慧融:投资理财有哪些受用方式
  10. 鲸准联合飞书推出投资云,升级投资机构的数
     栏目推荐
二手房“带押过户”启动满月 成功尝鲜者寥寥无几二手房“带押过户”启动满月 成功尝鲜者寥寥无几
2022年营收78.61亿,汤臣倍健迎来VDS行业新2022年营收78.61亿,汤臣倍健迎来VDS行业新周期
大兴国际氢能示范区兼顾产业发展和配套服务打造员工理想大兴国际氢能示范区兼顾产业发展和配套服务打造员工理想生活蓝本
迪丽热巴穿军绿色也好美!和吴磊同框丝毫没有年龄迪丽热巴穿军绿色也好美!和吴磊同框丝毫没有年龄
绿色塞罕坝 不朽的奇迹绿色塞罕坝 不朽的奇迹